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Abstract. This report is the second of a series dealing withthe

determination of optimal trajectories for the aeroassisted flight experiment

(AFE). The AFE refers to the study of the free flight of an autonomous

spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather

atmospheric entry environmental data for use in designing aeroassisted

orbital transfer vehicles (AOTV}.

It is assumed that: the spacecraft is a particle of constant mass;

the Earth is rotating with constant angular velocity;_the Earth is an oblate

planet, and the gravitational potential depends on both the radial distance

and the latitude_ however_harmoni_s of order higher than four are ignored_ _ i

-_ the atmosphere is at rest with respect to the Earth.

Under the above assumptions, the equations of motion for hypervelocity

atmospheric flight (which can be used not only for AFE problems, but also

for AOT problems and space shuttle problems) are derived in an inertial system.

Transformation relations are supplied which allow one to pass from quantities

computed in an inertial system to quantities computed in an Earth-fixed system

and viceversa. ! _ _ >/ _

Ke_ Words. Flight mechanics, hypervelocity flight, atmospheric flight,

coordinate systems, equations of motion, transformation techniques, optimal

trajectories, aeroassisted flight experiment, aeroassisted orbital transfer,

space shuttle reentry.
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I. Introduction

This report is the second of a series dealing with the determination

of optimal trajectories for the aeroassisted flight experiment (AFE). The

AFE refers to the study of the free flight of an autonomous spacecraft,

shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric

entry environmental data for use in designing aeroassisted orbital transfer

vehicles (AOTV).

It is assumed that: (a) the spacecraft is a particle of constant mass;

(b} the Earth is rotating with constant angular velocity; (c) the atmosphere

is at rest with respect to the Earth; (d) the Earth is an oblate planet,

and the gravitational potential depends on both the radial distance and the

latitude; however, harmonics of order higher than four are ignored.

Under the above assumptions, the equations of motion for hypervelocity

atmospheric flight (which can Be used not only for AFE problems, but also

for AOT problems and space shuttle problems) are derived in an inertial system.

Transformation relations are supplied which allow one to pass from quantities

computed in an inertial system to quantities computed in an Earth-fixed system

(Ref. I), and viceversa.

Previous Research. Previous research on the topics covered here can

be found in Refs. 2-12. For the general theory of flight paths and coordinate

systems_ see Refs. 2-3; for the equations of flight over a spherical Earth,

see Refs. 2-4; for the perturbed motilon about an oblate Earth, see Ref. 5;

for AFE prob]ems_ _ee Ref. 6; for reentry problems, see Ref. 7; for methods

of orbit determination_ _ee Refs. 8-9; for the values of the astrophysical

quantities, see Ref. I0; for the Values of the characteristic constants of

the oblate Earth_ see Refs. 11-12.
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Outline. Section 2 contains the notations, and Section 3 defines the

basic coordinate systems. The relations between coordinate systems are

discussed in Section 4,and the angular velocity (or evolutory velocity)

is introduced in Section 5. The kinematical equations for an inertial system

are derived in Section 6, and the dynamical equations are obtained in

Section 7. Section 8 summarizes the results, and Section 9 presents the

transformation relations which allow one to pass from quantities computed in

an inertial system to quantities computed in an Earth-fixed system, and

viceversa.
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2. Notations

Throughout the paper, the following notations are employed:

a = acceleration, m/sec2;

A = aerodynamic force, N;

CD : drag coefficient;

CL = lift coefficient;

CQ : side force coefficient;

D = drag force, N;

f = latitudinal component of the gravitational acceleration,

m/sec2;

g : radial component of the gravitational acceleration,

m/sec2;

J2 = characteristic constant of the Earth's gravitational field;

J3 : characteristic constant of the Earth's gravitational field;

J4 = characteristic constant of the Earth's gravitational field;

L = lift force, N;

m : mass, kg;

M : Mach number;

Q = side force, N;

r : radial distance, m;

re = equatori,al radius, m;

rp = polar radius, m;

Re = Reynolds number;

S = reference surface area, m2;

T = thrust force, N;

U = Earth's gravitational potential, m2/sec2;

AAR-23g
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V = velocity, m/sec;

W = gravitational force, N;

x = Cartesian coordinate, m;

y = Cartesian coordinate, m;

z = Cartesian coordinate, m;

= angle of attack, rad;

: path inclination, rad;

8 = longitude, rad;

: bank angle, rad;

Ue : Earth's gravitational constant, m3/sec 2"

p : air density, kg/m3;

o : sideslip angle, rad;

= latitude, rad;

× = heading angle, rad;

= angular velocity of the Earth with respect to an

inertial system, rad/sec;

_hi: angular velocity of the local horizon system with respect

to the inertial system, rad/sec.

Subscripts

b : body axes system;

e = Earth axes system;

h = local horizon system;

i = inertial axes. system;

w : wind axes system.

Superscripts

• = derivative with respect to time;

÷ : vector quantity.

AAR-239
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3. Basic Coordinate Systems

The basic coordinate systems for flight over a spherical Earth are the

inertial axes system OxiYiZ i, the Earth axes system OXeYeZe , the local

horizon system PXhYhZh , the wind axes system PXwYwZw, and the body axes

system PXbYbZ b.

3.1. Inertial Axes System. The inertial axes system OxiYiZ i is a

Cartesian reference frame defined as follows. Its origin 0 is the center of

the Earth; the zi-axis is aligned with the axis of rotation of the Earth

and is positive northward; the axes xi,Y i are orthogonal to the zi-axis

and are directed radially; the trihedral OxiYiZi is right-handed. In

particular, the plane xi,Y i contains the fundamental parallel (the Equator);

and the plane xi,z i contains the fundamental meridian(the Greenwich meridian)

at a particular time instant, the time instant t : O. The symbols ii,Ji,ki

denote the unit vectors of the inertial axes system; these unit vectors are

time invariant by definition.

3.2. Earth Axes System. The Earth axes system OXeYeZe is a Cartesian

reference frame which is rigidly attached to the Earth. Its origin 0 is

the center of the Earth; the Ze-aXis is aligned with the axis of rotation of

the Earth and is positive northward; the axes Xe,Y e are orthogonal to the

Ze-aXis and are di_rected radially; the trihedral OXeYeZ e is right-handed.

In particular, the plane Xe,Y e contains the fundamental parallel (the Equator);

and the plane Xe,Z e contains the fundamental meridian (the Greenwich meridian)

at all time instants. The symbols ie,Je,ke denote the unit vectors of the

Earth axes system; these unit vectors are time dependent.

3.3. Local Horizon System, The local horizon system PXhYhZh is a

Cartesian reference frame defined as follows. Its origin P is identical with

v
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the instantaneous position of the spacecraft; the zh-axis is directed

radially (that is, vertical) and is positive downward; the axes xh,Y h

are orthogonal to the zh-axis (therefore, they are tangent to the spherical

surface through P; they form the so-called local horizon plane); the

trihedral PXhYhZh is right-handed. In particular, the xh-axis is tangent to

the local parallel through P and is positive eastward; the Yh-axis is tangent

to the local meridian through P and is positive southward. The symbols

ih,Jh,k h denote the unit vectors of the local horizon system.

3.4. Wind Axes System. The wind axes system PXwYwZw is a Cartesian

reference frame defined as follows. Its origin P is identical with the

instantaneous position of the spacecraft; the Xw-aXis is tangent to the

flight path (relative velocity) and is positive forward; the axes yw,Zw

are orthogonal to the Xw-aXis and are such that the trihedral PXwYwZw is

right-handed. In particular, the Zw-aXis is contained in the plane of

sy_etry of the spacecraft and is positive downward for the normal flight

attitude of the spacecraft; the Yw-aXis is positive rightward for the normal

flight attitude of the spacecraft. The symbols iw,Jw,k w denote the unit

vectors of the wind axes system.

3.5. Bod_ Axes System. The body axes system PXbYbZb is a Cartesian

reference frame defined as follows. Its origin P is identical with

the instantaneous position of the spacecraft; the Yb-axis is orthogonal to

the plane of symmetry of the spacecraft and is positive rightward; the

axes Xb,Z b are orthogonal to the Yb-axis, are contained in the plane of

symmetry, and are such that the trihedral PXbYbZ b is right-handed. In

particular, the xb-axis is positive forward, the Yb-axis is positive
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rightward, and the zb-axis is positive downward for the normal flight

attitude of the spacecraft. The symbols ib,Jb,kb denote the unit vectors

of the body axes system.
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4. Relations between Coordinate Systems

In this section, the relationships between the different coordinate

systems are derived; more specifically, attention is focused on the

following system pairs: inertial axes-Earth axes; Earth axes-local horizon;

inertial axes-local horizon; local horizon-wind axes; and wind axes-body axes.

4.1. Basic Relations. In the inertial axes system, a point P can be

described via its Cartesian coordinates xi,Yi,Z i or via its spherical

coordinates ri,ei,@i. Here, ri is the radial distance from the center of

the Earth; ei is the longitude, positive eastward; and @i is the latitude,

positive northward. The following relations holdbetweenCartesian coordinates

and spherical coordinates:

xi : ricose i cos@ i,

Yi = risinei c°s@i'

(la)

(Ib)

zi = risin@i. (Ic)

In the Earth axes system, a point P can be described via its Cartesian

coordinates Xe,Ye,Z e or via its spherical coordinates r,e,@. Here, r is

the radial distance from the center of the Earth; e is the longitude, positive

eastward; and @ is the latitude, positive northward. The following relations

hold between Cartesian coordinates and spherical coordinates:

xe : rcose cos@,

Ye : rsine cos@,

(2a)

(2b)

ze = rsin@. (2c)
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Note that the inertial axes system and the Earth axes system coincide at time

instant t = O. Also note that the Earth axes system rotates with constant

angular velocity m with respect to the inertial axes system. Therefore,

in spherical coordinates, the following transformation relations hold:

ri = r,

Bi = 8 + mt,

implying the following inverse relations:

r= r i ,

@ : 8 i - rot,

(3a)

(3b)

(3c)

(4a)

(4b)

(4c)

N,:I

4.2. Transformation from Inertial Axes to Earth Axes. The Earth axes

system OxeYeZe is obtained from the inertial axes system OxiYiZi by means

of the counterclockwise rotation mt around the zi-axis. Note that the

Ze-aXis is the same as the zi-axis.

In vector-matrix notation, the transformation leading from the inertial

axes to the Earth axes can be expressed as follows:

-- --).

i e
..).

i Je

ke

cos(mt) sin(mt) 0

-sin(mt) cos(mt) 0

0 0 l

Ii

Ji

ki

, (5a)
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with the implication that

I i

Ji

k i
J.

cos(mt) -sin(wt) 0 i
e

sin(_t) cos(wt) 0 Je

0 0 1 k
e

(5b)

4.3. Transformation from Earth Axes to Local Horizon. The local

horizon system PXhYhZ h can be obtained from the Earth axes system OXeYeZe

by means of the combination of four rotations and one translation. This

requires the definition of four intermediate coordinate systems: the system

OXlYlZl; the system Ox2Y2Z2; the system Px3Y3Z3; and the system Px4Y4Z 4.

The system OXlYlZ l is obtained from the Earth axes system OXeYeZe by

means of the counterclockwise rotation 0 around the Ze-aXis. Note that the

zl-axis is the same as the Ze-aXis, that the axes Xl,Y 1 are contained in the

equatorial plane, and that the axes Xl,Z 1 are contained in a meridian plane.

The symbols il,Jl,k I denote the unit vectors of the system OXlYlZ I.

The system Ox2Y2Z 2 is obtained from the system OXlYlZl by means of

the clockwise rotation @ around the Yl-axis. Note that the Y2-axis is the

same as the Yl-axis, that the axes x2,z 2 are contained in a meridian

plane, and that the axes y2,z2 are contained in a plane parallel to the local

horizon plane. The symbols i2,J2,k 2 denote the unit vectors of the system

Ox2Y2Z2 •

The system Px3Y3Z 3 is obtained from the syste m Ox2Y2Z 2 by means of

the radial translation r, leading from point 0 to point P. Since there

is no rotation, the axes x3,Y3,Z3 are parallel to the axes x2,Y2,Z2;

in particular, the axes x3,z 3 are contained in a meridian plane, while
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the axes y3,z3 are contained in the local horizon plane. The symbols

i3,J3,k3 denote the unit vectors of the system Px3Y3Z 3.

The system Px4Y4Z4 is obtained from the system Px3Y3Z 3 by means of

the counterclockwise rotation _/2 around the z3-axis. Note that the

z4-axis is the same as the z3-axis, that the axes y4,z4 are contained in a

meridian plane, while the axes x4,z 4 are contained in the local horizon plane.

The symbols i4,J4,k4 denote the unit vectors of the system Px4Y4Z4 .

The local horizon system PXhYhZh is obtained from the system Px4Y4Z4

by means of the clockwise rotation _/2 around the x4-axis. Note that the

xh-axis is the same as the x4-axis, that the axes yh,Zh are contained in a

meridian plane, and the axes Xh,Y h are contained in the local horizon plane.

In vector-matrix notation, the successive transformations leading from

one coordinate system to another can be expressed as follows:

D

Il
.+

Jl
.-).

kl_

cose sine 0

-sin8 cose o

o o l

i

I
e

Je

ke

, (6a)

12

32

k2
u

cos@

= 0

-sin@

sin@

0

cos¢

Il

Jl

kI

, (6b)

m and

w
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m
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=

, _). --

13

33

k3
m

w .+

12

= 32

k2

14

34

k 4

0 1

-I 0 0

0 0 1

,- _).

I h

3 h

k h

1 0 0

0 0 -I

0 1 0

Equations (6) imply that

_). --

12
-+

32

k 2

cos0 cos@

-sin0

-cos0 sin@

T
0 i3 1

I

J3

k 3 '
J,

_). l

14

J4' "

k4 L

sin8 cos@ sin@ ie

cos@ 0 Je

-sine sin@ cos@ _ ke

(7a)

(7b)

(7c)

(8)

m

w

while Eqs. (7) imply that

,, _). m _-

i h _' 0 1
__ I

Jh = , 0 0

k h -1 0
.i J-

0

-I

0

,I- -). .
I .

12

32

k2
D , ,

(9)
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Therefore, upon combining Eqs. (8)-(9), we see that

ihT
.-).

Jh

kh

-sine

= cosO sin@

-cose cos@

w . ..>.

cose 0 _i
!

sine sin@ -cos@ i j,
1

I "+
-sine cos4_ -sin@ i k

I

(lOa)

with the implication that

I e

Je

ke

-sine cosO sine -cosO cos@

cosO sine sin@ -sine cos@

0 -cos@ -sing

]h

Jh

kh
I m

(lOb)

4.4. Transformation from Inertial Axes to Local Horizon. The

transformation leading from the inertial axes system to the local horizon

system requires the combination of five rotations and one translation, as one

surmises from Sections 4.2 and 4.3. If one combines Eqs. (5a) and (lOa)

and accounts for Eqs. (3), the following result is obtained:

w

- _). w

Ih

Jh

J kh_

-sine i cos8 i 0

cose i sin@ i sine i sin@ i -cos@ i

-cose i cos@ i -sine i cos@ i -sin@ i

with the implication that

.@.

Ii
.-).

Ji

ki
n

(lla)
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-_i _

Ji

ki

-sine i cose i sine i -cose i cos@ i

cose i sine i sin@ i -sine i cos@ i

0 -cos¢ i -sin¢i

.-).

Ih
-.)-

Jh

kh,

(llb)

4.5. Transformation from Local Horizon to Wind Axes. The wind axes

system PXwYwZw can be obtained from the local horizon system PXhYhZ h by

means of the combination of three rotations. This requires the definition

of two intermediate coordinate systems: the system Px5Y5Z5 and the system

Px6Y6Z 6 •

The system Px5Y5Z5 is obtained from the local horizon system PXhYhZh

by means of the counterclockwise rotation X around the zh-axis. Note

that the z5-axis is the same as the zh-axis, that the axes x5,Y 5 are contained

in the local horizon plane, and that the axes x5,z 5 are contained in the

plane (OP,V), where OP is the radius vector connecting the points 0 and P

and V is the relative velocity vector, namely, the velocity of the spacecraft

with respect to the Earth axes system. Also note that the axis x 5 has the

direction of the projected relative velocity vector Vp; this is the projection

of V on the local horizon. The angle X is called the heading angle and is

positive if the projected relative velocity vector Vp is directed outward with

respect to the local parallel. The symbols i5,J5,k 5 denote the unit vectors

of the system Px5Y5Z 5.

The system Px6Y6Z6 is obtained from the system Px5Y5Z 5 by means of

the counterclockwise rotation y around the Y5-axis. Note that the Y6-axis

is the same as the Y5-axis and that the axes x6,z 6 are contained in the

plane (OP,V). Also note that the x6-axis is positive forward and that the

=
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z6-axis is positive downward. The angle y is called the path inclination

and is positive if the relative velocity vector V is inclined upward with

respect to the local horizon. The symbols i6,J6,k 6 denote the unit vectors

of the system Px6Y6Z6 .

The wind axes system PXwYwZw is obtained from the system Px6Y6Z 6

by means of the counterclockwise rotation _ around the x6-axis. Note that

the Xw-aXis is the same as the x6-axis. Also, note that the Xw-aXis is

positive forward, the Yw-aXis is positive rightward, and the Zw-aXis is

positive downward and is contained in the plane of symmetry of the spacecraft.

The angle _ is called the angle of bank and is positive if the spacecraft

is banked to the right.

In vector-matrix notation, the successive transformations leading

from one coordinate system to another can be expressed as follows:

-- _). -

15
-+

3 5

k 5

cosx sinx 0 ih
,-).

-sinx cosx 0 Jh
.-).

0 0 1 k h

, (12a)

w ._. -F w

i6 _ cosy 0 -siny
.+ I

J61: o 1 o

k6 j. siny 0 cosy

/

15

J5

k 5
m _ m

'r -t- -r -

i I 1 0
W

Jw = 0 cos_

' kw I _ 0 -sin_

-- -- -)- -r

0 i 16

• I

sinla J6 I .
* :

cos_ k 6

(12b)

(12c)
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Equations (12) lead to

I w

3w

kw
-- m

cosy cOSX

sin_ siny cos×
-cos_ sinx

cosu siny cos×

+sinp sinx

cosy sin×

sin_ siny sinx

+COSp COS X

cosp siny sin%

-sinu cos×

-siny

sinp cosy

cosp cosy

ihl

Jh I' (13a)

I

k h I

w

2

i

_m

r _

with the implication that

Ih

• i

3hl =

4 1

kh
. J,

cosy cosx

cosy sin×

-siny

sinp siny cos×

-cosp sin X

sinp siny sinx

+COSH COS X

sin_ cosy

cosp siny cosx

+sinp sinx

cosu siny sinx

-sinp cosx

COSH COSy

_T _. -

Iw

Jw

kwl

• (13b)

4.6. Transformation from Wind Axes to Body Axes. The body system

PXbYbZb can be obtained from the wind axes system PXwYwZ w by means of the

combination of two rotations• This requires the definition of one intermediate

coordinate system, the system PX7YTZ7,

The system Px7Y7Z 7 is obtained from the wind axes system PXwYwZ w by

means of the counterclockwise rotation _ around the Zw-aXis. Note that the

z7-axis is the same as the Zw-aXis and that the axes x7,z 7 are contained

in the plane of symmetry of the spacecraft• Also note that the axis x7

is positive forward, the axis Y7 is positive rightward, and the axis z7

is positive downward. The angle o is called the sideslip angle and is

positive if the relative velocity vector V is directed leftward with respect

to the plane of symmetry of the spacecraft.
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The body axes system PXbYbZ b is obtained from the system Px7Y7Z7 by

means of the counterclockwise rotation m around the Y7-axis. Note that

the Yb-axis is the same as the Y7-axis and that the axes Xb,Z b are contained

in the plane of symmetry of the spacecraft. Also note that the axis xb

is positive forward, the axis Yb is positive rightward, and the axis zb

is positive downward. The angle m is called the angle of attack and is

positive if the relative velocity vector V is directed downward with respect

to the xb-axis of the spacecraft.

In vector-matrix notation, the successive transformations leading

from one coordinate system to another can be expressed as follows:

m .+

i7 T
..).

J7

k 7

. cos_ sino 0 iw

= l-sin_ coso 0 Jw

0 0 1 kw

Ib
.+

i •

Jb

kb

cos_ 0 -sin_ i7

0 1 0 J7
-+

sin_ 0 cosc_ k 7

with the implication that

Ib
-+

Jb
..).

kb

COS_ COSO

-sin_

sin_ cos_

cos_ sin_

COS_

sin_ sin_

-sin_

0

COS_

iw
-F

Jw

kw
m m

(14a)

(14b)

(15a)
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and that

, -)-

i w

Jw
-)-

k
W

J COS_ COSO
I
I

' cos_ sina
I

l-sins

-sing

COS_

0

sins coso

sins sing

COS_

Ib

_b
.-).

kb

(15b)
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5. An_ular Velocity

In this section, we compute the angular velocity (or evolutory velocity)

of the local horizon system with respect to the inertial axes system. To

do so, consider the behavior of the spacecraft between the time instants

t and t + dt, and denote by dQhi the infinitesimal vectorial rotation of

the local horizon system with respect to the inertial axes system. This

infinitesimal vectorial rotation can be decomposed into partial rotations

as follows:

= + d_eid_hi dQh4 + d_43 + d_32 + d_21 + dale , (16)

m

=5

w

with

d_h4 = O,

-),. ._

d_21 =-d@ Jl'

d_le : dE) ke,

dQei = codt ki.

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

m

Here, de denotes the infinitesimal change of the longitude, d@ denotes the

infinitesimal change of the latitude, and mdt denotes the infinitesimal

rotation of the Earth axes system with respect to the inertial axes system.

The rotation mdt occurs around the zi-axis and is positive counterclockwise;
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=

W

F =

the rotation dO occurs around the Ze-aXis and is positive counterclockwise;

and the rotation d@ occurs around the Yl-axis and is positive clockwise.

This explains the difference in the signs appearing on the right-hand

sides of Eqs. (17d), (17e), (17f).

Upon combining Eqs. (16)-(17), we see that the infinitesimal vectorial

rotation of the local horizon system with respect to the inertial axes

system can be written as

dQhi = mdt ki + d@ ke - d@ Jl"

As a consequence, the angular velocity of the local horizon system with

respect to the inertial axes system is given by

mhi = dQhi/dt = mki + eke - @Jl"

In the light of Eqs. (5)-(ll), the unit vectors ki, ke, Jl can be expressed

in terms of the unit vectors of the local horizon system as follows:

(18)

(19)

w

=

w

-). ..). -.).

ki = -c°s@i Jh - sin@i kh'

ke = -cos@ Jh " sin@ kh,

so that

ehi =-_ih - (Ocos@ + mcos@i)_ h - (Osin@ + msin@i)_ h.

Next, we invoke Eqs. (3),

(20a)

(20b)

(20c)

(21)
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- =

r, = r,
1

0 i = E) + rot,

@i = <h,

and observe that

r i : r,

E)i = _) + m,

, (22a)

(22b)

(22c)

(23a)

(23b)

(23c)

m

r

w

=

w

L

As a consequence, the angular velocity (21) can be rewritten as

;hi :-;i Th- ;i c°s*i_h- ;i sin,__h"

Next, Poisson's formulas are employed to compute the derivatives of

the unit vectors of the local horizon system with respect to time:

g

dih/dt = mhi × ih,

dJh/dt = _hi x Jh'

dkh/dt = mhi x kh.

Upon combining Eqs. (24)-(25), we obtain the relations

dih/dt =-(Oisin_i)Jh + (eicos¢i)kh,

(24)

(25a)

(25b)

(25c)

(26a)
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w

w

dJh/dt : (Gisin@i)ih - @ikh ,

_). -)- • -_-

dkh/dt =-(@icos@i)i h + @iJh ,

whose vector-matrix form is the following:

(d/dt)

Ih

Jh

0

= Oisin@i

-Oicos¢i

Oisin@i "icosqbi- 0

0 "¢i

_i 0

y --_

Ih

Jh
.-).

kh

It is interesting to note that Eq. (27) can also be obtained by taking the

time derivative of Eq. (lla) and using Eq. (llb).

(26b)

(26c)

(27)

w
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6. Kinematical Equations

In this section, we derive the scalar relationships corresponding to

the vectorial equation

w

w

i

dOP/dt = Vi .

Here, Vi denotes the velocity of the spacecraft with respect to the inertial

axes system and OP denotes the position vector joining the center of the

Earth 0 with the spacecraft position P.

_irst, we observe that the position vector OP is given by

OP = -r i k h,

where r i is the radial distance from the center of the Earth and k h is

the third unit vector of the local horizon system. As a consequence, the

time derivative of OP can be written as

dOP/dt = -rik h - r i(dkh/dt),

.@.

where dkh/dt is given by Eq. (26c).

and (30), we obtain the relation

Therefore, upon combining Eqs. (26c)

dOP/dt = Oiricos¢ii h - ¢iriJh - rik h.

We recall that the relative velocity vector V (velocity of the spacecraft

with respect to the Earth axes system) can be identified via three elements:

the relative velocity modulus V, the relative path inclination y, and

the relative heading angle X (see Section 4.5). Analogously, the inertial

velocity vector Vi (velocity of the spacecraft with respect to the inertial

axes system) can be identified via three elements: the inertial velocity

(28)

(29)

(3O)

(31)
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modulus Vi, the inertial path inclination Yi' and the inertial heading

angle Xi.

Let Vp and Vip denote the projections of the vectors V and Vi on

the local horizon. The relative path inclination y is the angle between

the vectors V and Vp; analogously, the inertial path inclination Yi is

the angle between the vectors Vi and Vip. The relative heading angle X

is the angle between the vectors Vp and ih; analogously, the inertial heading

angle ×i is the angle between the vectors Vip and ih. The conventions used

for the signs of Yi' Xi are analogous to the conventions used for the signs

of y, X.

With the above understanding, just as the relative velocity vector V

can be written in terms of its components on the local horizon system,

V = Vcosy cos× ih + Vcosy sinx Jh - Vsiny kh,

the inertial velocity vector Vi can be written in terms of its components

on the local horizon system,

Vi= Vic°sYi c°sxi ih + Vic°sYi sinxi Jh- VisinYi kh'

Finally, upon combining Eqs. (28), (31), (33), and upon projecting

the resulting vectorial equation on the axes of the local horizon system,

we obtain the following scalar form of the kinematical equations:

0i = Vicos_,i cosxi/ricos¢ i,

¢i =-Vic°sYi sinxi/ri'

ri : VisinYi.

(32)

(33)

(34a)

(34b)

(34c)
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6.1. Relations between Inertial Velocity and Relative Velocity. We

employ the theorem of composition of velocities, which states that the inertial

velocity Vi is the sum of the relative velocity V and the transport velocity

Vt ,

V i = V + Vt,

with

Vt = m x OP.

Owing to the fact that

= -mcos@ Jh - msin@ kh = -mcos¢ i Jh " msin_Pi kh'

OP = -rk h = -rik h,

the transport velocity (36) can be rewritten as

Vt = mrcos@ ih = mricos@ i ih.

Therefore, upon combining Eqs. (32), (33), (35), (38), and upon projecting

the resulting vectorial equation on the axes of the local horizon system,

the following scalar equations are obtained:

Vicosy i cosxi - _r i cos@i = Vcosy cosx,

VicosYi sinxi = Vcosy sinx,

VisinYi = Vsiny.

(35)

(36)

(37a)

(37b)

(38)

(39a)

(3gb)

(39c)
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Laborious manipulations, omitted for the sake of brevity, lead to the

following transformation relations:

Vi = /[V 2 + 2mrVcos¥ cosx cos@ + (mrcos@)2],

tanYi = Vsin¥//[(Vcos¥) 2 + 2_rVcos_ cos× cos@ + (_rcos@)2],

tan×i = Vcos¥ sin×/(Vcosy cos× + _rcos@).

Equations (40) imply the following inverse relations:

V = /[V_ - 2mriVicosy i cosx i cos@ i + (_ricos@i)2],

tany = VisinYi//E(VicosYi )2 - 2_riVicosy i cosx i cos@i + (mric°s¢i)2],

tan× : Vicosy i sinxi/(Vicosy i cosx i - mricos@i).

(40a)

(40b)

(40c)

(41a)

(41b)

(41c)

z

: = :
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, Dynamical Equations

In this section, we derive the scalar relationships corresponding

to the vectorial equation

-@. -)- .-). ..). -)-

T + A + W = mai = m(dVi/dt),

where T is the thrust, A is the aerodynamic force, W is the gravitational

force, m is the mass of the spacecraft, and a i is the inertial acceleration.

We consider the case where the engine is shut-off, so that

(42)

(43)

J

and the mass of the spacecraft is constant.

A + W = ma i = m(dVi/dt).

Hence, Eq. (42) is written as

(44)

We now compute the components of the vectors appearing in Eq. (44) on the axes of

the local horizon system.

7.1. Aerodynamic Force. The components of the aerodynamic force on

the wind axes are the drag D, the side force Q, and the lift L. Therefore,

the aerodynamic force can be written as

A =-Diw - QJw - Lkw" (45)

No special significance is implied in the signs appearing on the right-hand

side of Eq. (45). These signs merely reflect the conventions adopted in

this report with regard to the positive values for the drag, the side force,

and the lift.
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In vector-matrix form, Eq. (45) can be rewritten as follows:

D 0 0

0 Q 0

0 0 L

T w-

i Jw
i

i

w_
m

(46)

• J

w

1.J

Therefore, upon combining Eqs. (13a) and (46), we obtain the relation

.-).

A=

-Dcosy cos×

-Qsin_ siny cos×

+Qcos_ sinx

-Lcosu siny cos×

-Lsin_ sin×

-Dcosy sin×

-Qsin_ siny sin×

-Qcos_ cos×

-Lcosu siny sin×

+Lsin_ cosy

Dsiny

-Qsin_ cosy

-Lcos_ cosy

-- ..).

Ih
-+

Jh

.@-

kh

(47)

z

F _ C

w

w

The next step consists of rewriting the elements of the matrix in

Eq. (47) in terms of inertial velocity elements Vi,Yi,× i, instead of

relative velocity elements V,y,× o For this purpose, let the following

functions of the inertial velocity elements be defined:

M1 = Ml(Vi,Yi,×i) = VicosYi cos× i - mricos@ i,

M2 = M2(Vi,Yi,×i) = VicosYi sin× i,

M3 = M3(Vi,Yi,Xi) = VisinYi,

and

= M2_ ,
Nl Nl(Vi,Yi,Xi ) : Y(M_ + M_ + 3'

(48a)

(48b)

(48c)

(49a)

(49b)
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w

w

i

g

N4= ,4(vi.Yi,×i) = Hl/,,,(M_ + M_),

"s = ,_(vi.Yi.×i) = M2iC(M_ + M_).

In the light of Eqs. (39), the following relations can be established:

M 1 = Vcos_ cosx,

M2 = Vcosy sinx,

M3 = Vsiny,

and

N1 : V,

N2 = cosy,

N3 = siny,

N4 = COS×,

N5 = sinx.

Therefore, upon combining Eqs. (47)

A =

and (50)-(51), we obtain the relation

-DN2N 4 "DN2N5 DN3

-Qsin_ N3N 4 -Qsin_ N3N 5 -Qsin_ N2

+Qcos_ N5 -Qcos_ N4

-Lcos_ N3N 4 -Lcos_ N3N 5 -Lcos_ N2

-Lsin_ N5 +Lsin_ N4

I h

.-).

Jh

--F

k h

(49c)

(49d)

(49e)

(50a)

(50b)

(5oc)

(51a)

(51b)

(51c)

(51d)

(51e)

(52)



.7

L
w

w

- v

w

w

30 AAR-239

7.2. Gravitational Force. Here, we assume that the Earth is an

oblate planet and that its mass has radial symmetry with respect to the

axis of rotation. Because the equatorial radius r e is larger than the polar

radius rp, the gravity force W has two components: the radial component mg,

directed toward the center of the Earth, and the latitudinal component mf,

tangent to the local meridian and directed toward the Equator. Therefore,

the gravity force can be written as

W = mfj h + mgk h.

The radial component g and the latitudinal component f of the

acceleration of gravity are related to the Earth's gravitational potential

U by the expressions

where

g = BU/_r i, f : (I/ri)BU/B@i,

(53)

(54)

U :-(Pe/ri)[l + J2(re/ri)2H2 + J3(re/ri)3H3 + J4(re/ri)4H4 ], (55a)

H2:I/2 - (3/2)sin2@i , (55b)

H3= (3/2)sin@i - (5/2)sin3_i , (55c)

H4:-(3/8 ) + (30/8)sin2@i - (35/8)sin4@i . (55d)

Here,p e is the Earth's gravitational constant, r e is the equatorial radius,

and J2' J3' J4 denote the characteristic constants of the Earth's

gravitational field. Note that the expression for U is approximate, since

harmonics of order higher than four are ignored.
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Upon combining Eqs. (54)-(55), we see that the components of the

acceleration of gravity can be written as

g = (_e/r#)[l +J2(re/ri)2G2 + J3(re/ri)3G3 + J4(re/ri)4G4 ],

G2 : 3/2 - (9/2)sin2@i ,

G3 = 6sin@i - lOsin3@i _

G4 =-15/8 + (150/8)sin2¢i - (175/8)sin4@i ,

and

f =(l]e/r_) {J2(re/ri)2F 2 + J3(re/ri)3F 3 + J4(re/ri)4F 4] ,

F2 = 3sin@i cos@ i,

F3 =-(3/2)cos@ i + (15/2)sin2@i cos@ i,

F4 =-(15/2)sine i cos¢ i + (35/2)sin3@i cos@ i.

7.3. Inertial Acceleration. Let Vix h, Viy h, Viz h

of the inertial velocity on the local horizon system,

denote the components

Vix h : Vicosy i cosx i,

Viy h : VicosYi sinx i,

Viz h =-Visiny i.

With this understanding, the inertial velocity (33) can be rewritten as

Vi = Vixhih + ViyhJ h + Vizhkh •

(56a)

(56b)

(56c)

(56d)

(57a)

(57b)

(57c)

(57d)

(58a)

(58b)

(58c)

(59)
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Therefore, the inertial acceleration is given by

+ G Gi/ ;i:h hdVi/dt = ixhlh + Jh +

._. =_ -+

+ Vixh(dih/dt) + Viyh(dJh/dt) + Vizh(dkh/dt).

If we combine Eqs. (26) and (34), the time derivatives of the unit vectors

of the local horizon system can be written as

dih/dt = -(Vic°sYi c°sxi tan@i/ri)Jh + (Vicosy i cos×i/ri)kh ,

dJh/dt = (VicosYi cos× i tan@i/ri)i h + (Vicos¥ i sin×i/ri)k h,

..). -+

dkh/dt =-(VicosYi cos×i/ri)i h

-+

- (Vicosy i sinxi/ri)J h.

Upon combining Eqs. (58), (60), (61), the inertial acceleration becomes

d_i/dt = (Vixh + V_C°S2yi c°sxi sinxi tan@i/ri + V_c°sYi sinYi c°sxi/ri)_h

+ (Viy h - V_COS2yi COS2Xi tan_Pi/ri + V_cosy i siny i sin×i/ri)_ h

+ (Vizh + V_c°s2yi/ri)kh"

7.4. Scalar Equations. Next, we combine Eqs. (44), (52), (53), (62).

Upon projecting the resulting vectorial equation on the axes of the local

horizon system, we obtain the following scalar equations:

Vix h = -DN2N4/m + (QN5/m)cosiJ - (QN3N4/m)sinlJ

- (LN5/m)sinp - (LN3N4/m)cosp

- (V_/ri)(cos2yi cos× i sin× i tan@ i + cosy i siny i cos×i),

(60)

(61a)

(61b)

(61c)

(62)

(63a)
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5

v

Viy h = -DN2N5/m - (QN4/m)cos_ - (QN3N5/m)sinp

+ (LN4/m)sinp - (LN3N5/m)cosp

+ f + (V_/ri)(cos2yi cos2xi tan@ i - cosYi siny i sin×i),

Vizh = DN3/m - (QN2/m)sinp - (LN2/m)c°sp

+ g - (V_/ri)cos2yi .

We recall that the components of the inertial velocity on the axes of the

local horizon system are given by [see Eqs. (58)]

Vix h = VicosYi cos× i ,

Viy h = VicosYi sinx i,

Viz h =-Visiny i ,

with the implication that

(63b)

(63c)

(64a)

(64b)

(64c)

•

_ Vixh
i

Viyh

Vizh

cosy i cosx i

cosy i sin× i

-siny i

-siny i cos× i

-siny i sinx i

-cosy i

-sin×i , Vi

cosx i Vi'_i

0 VicosYi)_i

(65)

W

v

and that

l o

Vi

Vi_ i
i

iV i2 c°sYixi

cosy i cosx i

-siny i cos× i

-sin× i

cosy i sinx i -siny i _ Vix h

-siny i sinx i -cosy i Viy h •

i

cosxi 0 Viz h
i

(66)
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The final step consists of combining Eqs. (63) and (66).

the following scalar form of the dynamical equations:

Vi : -DN7/m+ (DN6/m)c°s_i c°sxi

- (QN4N6/m)sin_ siny i + (QN6/mN2)cos_cosyi sinx i

- (LN4N6/m)cosu siny i - (LN6/mN2)sin_cosyi sinx i

This leads to

w

I

w

w

w

w

+ fcosy i sinx i - gsinYi,

Vi_ i =-(DN6/m)siny i cosx i

(67a)

+ (Q/mN2)sin_ cosy i - (QN6NT/mN2)sin_ sin2yi cosx i - (QN6/mN2)cos_ siny i sinx i

+ (L/mN2)cosu cosy i - (LN6N7/mN2)cos_ sin2yi cosx i + (LN6/mN2)sinu siny i sin× i

- fsinYi sinxi + (V_r i - g)cos¥i , (67b)

VicosYix i :-(DN6/m)sinx i

- (QN6N7/mN2)sinu siny i sinx i - (QNT/mN2)cos_ cosy i + (QN6/mN2)cos_ cos× i

- (LN6N7/mN2)cos_ siny i sinx i + (LN7/mN2)sin_ cos_ i - (LN6/mN2)sin_ cosx i

+ fcosx i + (V_/ri)cos2yicosxi tan@i , (67c)

where

N6 = mricos@i/N I, (68a)

N7 = Vi/N I. (68b)

Equations (67) can be rewritten as
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Vi =-DN7/m+ (DN6/m)cosYi cosxi

- (QN4N6/m)sinpsiny i + (QN6/mN2)cos_cosyi sinx i

- (LN4N6/m)cos_ sinT i - (LN6/mN2)sin_ cosyi sinx i

+ fcosTi sinx i - gsiny i, (69a)

_i :-(DN6/mVi)sinYi c°sxi

+ (Q/mN2Vi)sin_ cosyi - (QN6NT/mN2Vi)sin_sin2yi cosxi -- (QN6/mN2Vi)cos_sinTi sinx.

+ (L/mN2Vi)cos_ cosyi - (LN6N7/mN2Vi)cos_sin2Ti cosxi + (LN6/mN2Vi)sinu siny i sinx.

- (f/Vi)siny i sinx i + (Vi/r i - g/Vi)cosy i, (69b)

Xi =-(DN6/mVi)sin×i/c°sYi

- (QN6NT/mN2Vi)sinptany i sinx i - (QN7/mN2Vi)cos_ + (QN6/mN2Vi)cos_cosxi/cosy i

L_

- (LN6N7/mN2Vi)cos_ tany i sin× i + (LN7/mN2Vi)sin_ - (LN6/mN2Vi)sin_ cosxi/cosy i

+ (f/Vi)cosxi/cosYi + (Vi/ri)cosy i cos×i tan¢ i. (69c)

w



36 AAR-239

w

w

8. Summary of Results

In this report, we have derived the equations of motion of a spacecraft

under the following assumptions: (a) the spacecraft is a particle of constant

mass; (b) the Earth is rotating with constant angular velocity; (c) the

atmosphere is at rest with respect to the Earth; (d) the Earth is an oblate

planet, and the gravitational potential depends on both the radial distance

and the latitude; however, harmonics of order higher than four are ignored.

An inertial axes system has been used, and the following kinematical

and dynamical equations have been obtained:

ei : Vic°sYi c°sxi/ric°s@i'

$i =-Vic°sYi sinxi/ri'

_i = VisinYi'

and

Vi = -DN7/m + (DN6/m)c°sYi c°s×i

- (QN4N6/m)sin_ siny i + (QN6/mN2)cos_ cosy i sinxi

(70a)

(70b)

(70c)

- (LN4N6/m)cos_ siny i - (LN6/mN2)sin_ cosy i sin× i

+ fcosYi sinx i _ gsinYi, (71a)

_i =-(DN6/mVi)sinYi c°sxi

+ (Q/mN2Vi)sin _ cosYi - (QN6N7/mN2Vi)sin p sin2yi cos×i - (QN6/mH2Vi)cos_ sinYi sinx

+ (L/mN2Vi)cos _ cosYi - (LN6N7/mN2Vi)cos_ sin2yi cosxi + (LN6/mN2Vi)sin_ siny i sinx

_ (f/Vi)siny i sinx i + (Vi/r i - g/Vi)cosYi , (71b)
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Xi =-(DN6/mVi)sinxi/c°sYi

- (QN6 N7/mN2Vi)sinp tany i sinx i - (QN7/mN2Vi)cosp + (QN6/mN2Vi)cosp cosxi/cosy i

- (LN6 N7/mN2Vi)cosp tan¥ i sinx i + (LN7/mN2Vi)sin_ - (LN6/mN2Vi)sinp cosxi/cosy i

+ (f/Vi)cosxi/cosy i + (Vi/ri)cosYi cosx i tan@i. (71c)

In the dynamical equations (71), the quantities Ni depend on the inertial

velocity elements Vi, Yi' Xi and are given by

with

N1 = vl(M_ + M_ + M_),

"4: +

N6 = coricos@i/N I,

N7 = Vi/N I,

M1 = Vicosy i cosx i - mricos¢ i,

M2 = Vicosy i sinx i,

M3 = VisinYi.

(72a)

(72b)

(72c)

(72d)

(72e)

(72f)

(72g)

(73a)

(73b)

(73c)



38 AAR-239

_I

. o

c

=_

L

w

8.1. Aerodynamic Force. In Eqs. (71), the drag, the side force,

and the lift are given by

2 2 s2
D = (1/2)CDPS(V _ - 2_riVicosYi cosxi cos¢ i + m rico @i ),

22 2.
2 _ 2_riVicosy i cosx i cos_ i + _ ric°s @i),Q = (I/2)CQpS(V i

L = (1/2)CLPS(V2 - 2_riVicosy i cosxi cos_ i + _2r_cos2@ i)i '

where CD is the drag coefficient, CQ is the side force coefficient, CL

is the lift coefficient, p is the air density, and S is a reference surface

area. In turn, the aerodynamic coefficients are functions of the form

CD = CD(_,_,M,Re) ,

CQ = CQ(_,o,M,Re),

CL = CL(_,o,M,Re),

(74a)

(74b)

(74c)

(75a)

(75b)

(75c)

w

m_

= =

where _ is the angle of attack, _ is the sideslip angle, M is the Mach

number, and Re is the Reynolds number.

8.2. Gravitational Force. In Eqs. (71), the radial component and the

latitudinal component of the acceleration of gravity are given by

g : (_e/r_)[l + J2(re/ri)2G2 + J3(re/ri)3G 3 + J4(re/ri)4G4 ], (76a)

G2 = 3/2 - (g/2)sin2@i , (76b)

G3 = 6sin@i - lOsin3@i , (76c)

G4 =-15/8 + (150/8)sin2¢i - (175/8)sin4¢i , (76d)
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and

f =(_e/r_)[J2(re/ri)2F2 + J3(re/ri)3F3 + J4(re/ri)4F4 ], (77a)

F2 = 3sin@i cos@i, (77b)

F3 =_(3/2)cos@i + (15/2)sin2@i cos@i , (77c)

F4 =_(15/2)sin@ i cos@ i + (35/2)sin3@i cos¢i. (77d)

8.3. Physical Constants. The major physical constants appearing in

the system (70)-(77) have the following values:

= 0.729211595 E-04 rad/sec, (78a)

_e = 0.39860064 E+15 m3/sec 2, (78b)

J2 = 0.I0826271 E-02,

J3 :-0.25358868 E-05,

J4 =-0.1624618 E-05,

re = 0.6378164 E+07 m,

rp = 0.6356755 E+07 m.

Here, m is the Earth's angular velocity;u e is the Earth's gravitational

(78c)

(78d)

(78e)

(78f)

(78g)

constant; J2' J3' J4 are the characteristic constants of the Earth's gravitational

field; re is the Earth's equatorial radius; and rp is the Earth's polar radius.

Note that the Earth's sea-level radius rsc varies with the latitude @i

according to the relation
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rs_ : (I/2)(r e + rp) + (I/2)(r e - rp)COS(2@i).

8.4. Spacecraft Data. For the AFE vehicle, it is assumed that

(79)

m = 0.16782918 E+04

S = 0.14314 E+02

kg, (80a)

2 (80b)m ,

= 0.17000 E+02 deg, (80c)

CL =-0.370696 E+O0, (80d)

CD = 0.131452 E+OI. (80e)

Here, m is the spacecraft mass at atmospheric entry; S is the reference

surface area; _ is the angle of attack; CL is the lift coefficient; and CD

is the drag coefficient. Note that, for the aeroassisted flight experiment,

the angle of attack is kept constant; the aerodynamic coefficients are assumed

to be independent of the Mach number and the Reynolds number; and the spacecraft

is controlled via the angle of bank.
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9. Transformation Relations

In this section, we summarize the transformation relations which allow

one to pass from (i) quantities computed in an Earth-fixed system to

(ii) quantities computed in an inertial system, and viceversa.

9.1. Spacecraft Position. Let r, 8, @ denote the spherical coordinates

of the spacecraft P in the Earth-fixed system OXeYeZe . Let r i, 0 i, @i

denote the spherical coordinates of the same spacecraft in the inertial

system OxiYiZ i. Assume that the axes of the Earth-fixed system coincide

with the axes of the inertial system at time instant t = O. Then, the

following transformation relations hold:

ri = r,

0i = 0 +rot,

@i = @"

Equations (81) imply the following inverse relations:

r = ri,

0 : 0 i - rot,

¢ = qbi.

9.2. Spacecraft Velocity. Let V, y, X denote the velocity modulus, the

path inclination, and the heading angle in the Earth-fixed system OXeYeZe .

Let Vi, Yi' ×i denote the velocity modulus, the path inclination, and the

heading angle in the inertial system OxiYiZi • The following transformation

relations hold:

(81a)

(81b)

(81c)

(82a)

(82b)

(82c)

w
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Vi = _[V 2 + 2_rVcosy cosx cos@ + (mr cos@)2],

tan¥ i = Vsiny//[(Vcosy) 2 + 2mrVcosy cosx cos@ + (mr cos@)2],

tan×i = Vcosy sin×/(Vcosy cos× + mrcos@).

Equations (83) imply the following inverse relations:

V = _[V_ - 2mriVicosYi cosxi cos@i + (mricos@i)2],

tany = VisinYi/_[(VicosYi )2 - 2mriVicosYi cosxi cos@i + (mricos@i)2],

tan× = Vicosy i sin×i_VicosYi cos×i - mricos@i).

9.3. Cartesian Coordinates. After the spacecraft position is known

in spherical coordinates, the corresponding Cartesian coordinates can be

computed. The following transformation relations hold:

xe rcosO cos@,

(83a)

(83b)

(83c)

(84a)

(84b)

(84c)

(85a)

Ye : rsinO cos@, (85b)

Ze : rsin@, (85c)

and

xi = ricoso i cos@ i ,

Yi = risinOi c°s@i'

(86a)

(86b)

z i = risin@ i. (86c)
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9.4. Cartesian Velocity Components. After the spacecraft velocity

elements V, y, × or Vi, Yi' Xi are known, the Cartesian velocity components

Xe' Ye' Ze or xi' Yi' zi can be computed. The following transformation

relations hold :

_e =-VsinO cosy cosx + VcosO sin@ cosy sinx + VcosO cos@ siny,

Ye = VcosO cosy cos× + VsinO sing cosy sin× + VsinO cos@ siny,

_e =-Vcos@ cosy sin× + Vsin@ siny,

and

(87a)

(87b)

(87c)

= =

_i =-VisinOi c°sYi c°sxi + Vic°sOi sin¢i c°sYi sinXi

+ VicosO i cos@ i siny i,

Yi : Vic°sOi c°sYi c°sxi + VisinOi sin@i c°sYi sinXi

+ VisinO i cos@ i siny i,

zi :-Vic°s@i c°sYi sinxi + Visin@i sinYi"

(88a)

(88b)

(88c)
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I0. Conclusions

This report is the second of a series dealing with the determination

of optimal trajectories for the aeroassisted flight experiment (AFE). The

AFE refers to the study of the free flight of an autonomous spacecraft,

shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric

entry environmental data for use in designing aeroassisted orbital transfer

vehicles (AOTV).

It is assumed that: the spacecraft is a particle of constant mass;

the Earth is rotating with constant angular velocity; the Earth is an

oblate planet, and the gravitational potential depends on both the radial

distance and the latitude; however, harmonics of order higher than four are

ignored; the atmosphere is at rest with respect to the Earth.

Under the above assumptions, the equations of motion for hypervelocity

atmospheric flight (which can be used not only for AFE problems, but also for

AOT problems and space shuttle problems)are derived in an inertial system.

Transformation relations are supplied which allow one to pass from quantities

computed in an inertial system to quantities computed in an Earth-fixed system,

and vicever_a.

V

u
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